Graeme Segal's Burnside ring conjecture
نویسندگان
چکیده
منابع مشابه
The slice Burnside ring and the section Burnside ring of a finite group
This paper introduces two new Burnside rings for a finite group G, called the slice Burnside ring and the section Burnside ring. They are built as Grothendieck rings of the category of morphisms of G-sets, and of Galois morphisms of G-sets, respectively. The well known results on the usual Burnside ring, concerning ghost maps, primitive idempotents, and description of the prime spectrum, are ex...
متن کاملSimple biset functors and double Burnside ring
Let G be a finite group and let k be a field. Our purpose is to investigate the simple modules for the double Burnside ring kB(G,G). It turns out that they are evaluations at G of simple biset functors. For a fixed finite group H, we introduce a suitable bilinear form on kB(G,H) and we prove that the quotient of kB(−, H) by the radical of the bilinear form is a semi-simple functor. This allows ...
متن کاملThe extended Burnside ring and module categories
In this note an ‘extended Burnside ring’ is defined, generated by classes of semisimple module categories over Rep(G) with quasifibre functors. Here G is a finite group and representations are taken over an algebraically closed field of characteristic 0. It is shown that this is equivalent to a ring generated by centrally extended G-sets and hence the name. Ring homomorphisms into the multiplic...
متن کاملBurnside obstructions to the Montesinos – Nakanishi 3 – move conjecture
Yasutaka Nakanishi asked in 1981 whether a 3–move is an unknotting operation. In Kirby’s problem list, this question is called The Montesinos–Nakanishi 3– move conjecture. We define the nth Burnside group of a link and use the 3rd Burnside group to answer Nakanishi’s question; ie, we show that some links cannot be reduced to trivial links by 3–moves. AMS Classification numbers Primary: 57M27 Se...
متن کاملThe Burnside Ring and Equivariant Cohomotopy for Infinite Groups
After we have given a survey on the Burnside ring of a finite group, we discuss and analyze various extensions of this notion to infinite (discrete) groups. The first three are the finite-G-set-version, the inverselimit-version and the covariant Burnside group. The most sophisticated one is the fourth definition as the equivariant zero-th cohomotopy of the classifying space for proper actions. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the American Mathematical Society
سال: 1982
ISSN: 0273-0979
DOI: 10.1090/s0273-0979-1982-14979-5